

1

repoVizz tutorial

About repoVizz
repoVizz1 is an integrated online system capable of structural formatting and remote
storage, browsing, exchange, annotation, and visualization of synchronous multi-modal,
time-aligned data. Motivated by a growing need for data-driven collaborative research,
repoVizz aims to resolve commonly encountered difficulties in sharing or browsing large
collections of multi-modal data. At its current state, repoVizz is designed to hold
time-aligned streams of heterogeneous data: audio, video, motion capture, physiological
signals, extracted descriptors, annotations, et cetera. Most popular formats for audio and
video are supported, while CSV formats are adopted for streams other than audio or video
(e.g., motion capture or physiological signals). The data itself is structured via customized
XML files, allowing the user to (re-) organize multi-modal data in any hierarchical manner,
as the XML structure only holds metadata and pointers to data files. Datasets are stored in
an online database, allowing the user to interact with the data remotely through a
powerful HTML5 visual interface accessible from any standard web browser; this feature
can be considered a key aspect of repoVizz since data can be explored, annotated, or
visualized from any location or device. Data exchange and upload/download is made easy
and secure via a number of data conversion tools and a user/permission management
system.

About this tutorial
Through this tutorial, the user can familiarize themselves with the procedure of uploading
multimodal data to repoVizz. It includes designing a datapack structure, learning the
different formats that repovizz is compatible with, generating the datapack, uploading it
to repoVizz, visualize it using the html5 web based tool and sharing it with other users.
The research leading to the repoVizz results has been partially funded by the European
Commission through the SIEMPRE FET Open Project. This tutorial has been produced
thanks to the financial support of the TECNIO network of ACC1Ó, the Catalan agency for
Competitiveness

1 http://repovizz.upf.edu/

2

1 The toy dataset

This tutorial is accompanied by a “toy example”2, the toy example is a zip file containing a
small collection of data with which one can try out the most common operations required
for uploading multi-modal data to repoVizz. Inside the toy example, a folder named
ToyDataset contains a list of all the data included in the “toy dataset” that can be seen in
Table 1; all data originate from a brief string quartet recording (audio, mocap and video).

Category Filename Description

Audio pickup1.wav
pickup2.wav
pickup3.wav
pickup4.wav
ambbi.mp3

Pickup recording of violin 1
Pickup recording of violin 2
Pickup recording of viola
Pickup recording of cello
Ambient recording with binaural stereo microphone

MoCap (marker data) qualisys.tsv Qualisys marker data

MoCap (marker labels) qualisyslabels.txt Qualisys marker labels

Video video.mp4 Frontal video of the entire quartet

Descriptor
(repoVizz CSV)

bowdisplacement1.csv
bowdisplacement2.csv
bowdisplacement3.csv
bowdisplacement4.csv

Bow displacement of violin 1
Bow displacement of violin 2
Bow displacement of viola
Bow displacement of cello

Annotation
(Note segmentation)

segmentation1.notes
segmentation2.notes
segmentation3.notes
segmentation4.notes

Note segmentation (alignment) of violin 1
Note segmentation (alignment) of violin 2
Note segmentation (alignment) of viola
Note segmentation (alignment) of cello

Table 1: List of filenames and descriptions for the files inside the toy dataset.

Besides the toy dataset, this tutorial also includes the “toy datapack” (included in the toy
example within folder ToyDatapack), it is an example of how these data should look like
when they are ready to be uploaded to repoVizz. If you want to learn how to prepare data
for upload, continue to the next steps; if not, you can skip directly to section 5 ’Uploading
a Datapack to repoVizz’.

2 http://repovizz.upf.edu/misc/ToyExample.zip

3

2 Data formatting and structuring

This section is included for the reader to understand better the structuring of data and
have an idea of the kind of data that can be uploaded and visualized in repoVizz. A
detailed explanation of the different types of supported data types and it’s corresponding
attributes, as well as how the data is organized is explained. For those users that like "to
go fast" you can skip to section 3 "Creating an XML structure with the repoVizz Datapack
Designer" but you may want to return to this section to resolve some doubts that may
arise while following the tutorial or when dealing with other custom data (not the one in
the toy dataset).

repoVizz data entities are constituted as collections of time-synchronous multi-modal data
files (signals or annotations) organized in a tree structure that holds pointers to such files,
associated metadata, text-based descriptions, and pointers to supplementary files. The
tree structure is implemented by means of a customary XML file, the repoVizz Struct,
which is hierarchically formed by different types of nodes with functions ranging from
organizing data or holding text descriptions to holding pointers to data files of different
types. The logical entity formed by a repoVizz Struct and all files pointed by its nodes is a
repoVizz Datapack. A schematic representation of a repoVizz Datapack is found in Figure
0. Color coding is used for the different types of nodes. Further details on node types and
data formats is provided in subsequent sections.

Figure 1: (Left) Overview of the repoVizz Struct nodes types and corresponding
attributes. (Right) Schematic illustration of a repoVizz Datapack: a tree structure (repoVizz

Struct) in which nodes are used either for describing and organizing data or for holding
pointers to data files.

2.1 The repoVizz Struct
A repoVizz Struct is a standard XML file that semantically organizes the different data

4

streams that are contained inside a Datapack. A set of nodes (in a tree structure) with
their corresponding attributes form a structure where some nodes have pointers to data
files and other nodes contain text descriptions. Figure 2 shows a excerpt of a Datapack
Struct XML file containing audio and video files.

Although a Struct could be manually generated creating a raw XML file, a tool is available (
repoVizz Datapack Designer) to build it using an intuitive graphical user interface (it’s not
mandatory but more than recommended using this tool when creating a datapack struct).
Instructions on the usage of this tool to create a datapack can be found in section 3.

2.2 Node types and data formats
Seven main types of nodes are available: GENERIC, DESCRIPTION, AUDIO, VIDEO, SIGNAL,
ANNOTATION, and FILE. The first two are used for structural and description purposes and
do not hold pointers to data. The rest of nodes do hold pointers to data, and each node
points only to one file. AUDIO, VIDEO, and SIGNAL nodes respectively hold references to
audio streams, video streams, and signals other than audio or video. ANNOTATION nodes
hold text-based time-referred annotation data, e.g. segmentations or event annotations.
For all AUDIO, VIDEO, SIGNAL, and ANNOTATION nodes, it is assumed that all data pointed
by them are time-synchronous. FILE nodes can be used to embed any other type of file
(documents, images, etc.) that is relevant to the dataset.

<ROOT>

 <DESCRIPTION Category="Information"

 Text="Test Datapack" />

 <GENERIC Category="AudioGroup"

 Name="Audio Tracks" >

 <AUDIO Category="Ambient"

 Name="Cardioid microphone"

 Filename="ambient.wav"

 FRAMERATE="44100.0"

 OFFSETTIME="0.0" />

 <AUDIO Category="Ambient"

 Name="Binaural stereo microphone"

 Filename="binaural.wav"

 FRAMERATE="44100.0"

 OFFSETTIME="0.0" />

 </GENERIC>

 <GENERIC Category="VideoGroup"

 Name="Video" >

 <VIDEO Category="HQ"

 Name="HQ Video Camera"

 Filename="videoHQ.mp4"

 OFFSETTIME="0.0" />

 </GENERIC>

 <GENERIC Category="AnnotationGroup"

 Name="Annotations" >

 <ANNOTATION Category="EventList"

 Name="Note Onsets"

 Filename="onsets.csv"

 OFFSETTIME="0.0" />

 </GENERIC>

 <GENERIC Category="BioSignalsGroup"

 Name="Bio Signals" >

 <SIGNAL Category="EKG"

5

 Name="EKG Sensor"

 Filename="ekg.wav"

 FRAMERATE="240.0"

 OFFSETTIME="12.35"

 MAXVAL="100.0"

 MINVAL="0.0" />

 <SIGNAL Category="EMG"

 Name="EMG Sensor"

 Filename="emg.csv"

 FRAMERATE="2000.0"

 OFFSETTIME="7.23"

 MAXVAL="10.0"

 MINVAL="0.0" />

 </GENERIC>

</ROOT>

Figure 2: XML file containing an excerpt of a Datapack Struct

Most node types own an attribute called Category and another attribute called Name.
While the Name attribute holds text meant to be a placeholder for the user to provide a
name for the node, the Category attribute is used as means for (semantic) classification
purposes. As an example use of the Category attribute, one might have two SIGNAL nodes
respectively containing EEG and EKG time-series, and use the tags “EEG” and “EKG” as
their respetive Category attribute. A visual overview of the node types and their attributes
is found in Figure 0.

2.2.1 GENERIC nodes
GENERIC nodes (white color) constitute the basic building block to organize and structure
the data. They do not hold any type of pointer to data files, but can accept any other node
type as children. The attributes of a GENERIC node are the following:

• Category. Holds a category tag, which helps in identifying the type or significance of
the contents of the node when navigating the data structure. For example, if a
GENERIC node is used to group three one-dimensional data streams corresponding to
the signals of a 3DOF sensor, a possibility would be to set “3DOF” as Category.

• Name. User-defined text attribute to specify a name for the node.

It is recommended to use GENERIC nodes for (a) grouping nodes that hold the same type
of data, (b) grouping nodes that share a semantic or logical characteristic or (c) grouping
sub-nodes (each structured by means of a GENERIC node). Below we provide a couple of
small conceptual examples, each corresponding to one of the uses just mentioned.

Example 1. If nodes or node groups contained in a GENERIC node hold the same

nature of data (for example, all audio data streams acquired through a microphone array),
we recommend to set as Category a tag formed by a word identiying such nature plus the
word “Group”, like for instance “AudioGroup,” “VideoGroup,” or “MoCapGroup.”
Regarding the Name attribute, one may want to specify peculiarities about the data
streams or their acquisition process (e.g., hardware used, etc.).

6

Example 2. If nodes or node groups contained in a GENERIC node share a given

semantic or logic characteristic (for instance, all data corresponding to a given subject in
an experiment recording), we recommend to set that characteristic (for instance,
“Subject,” “Take,” or “Instrument”) as Category. The Name attribute could contain the
details or value of such characteristic (i.e., “Antonio,” “001,” or “violin”).

 Although the tags used for the Category attribute can be freely defined by the
user, a number of predefined tags are available. A list with currently available categories is
made available during the creation of the repoVizz Struct via the repoVizz Datapack
Designer as described in Section 3. This applies to all node types.

2.2.2 DESCRIPTION nodes
DESCRIPTION nodes (grey color) are nodes whose only purpose is to allow for insertion of
user-defined text information at any level in the tree structure. They do not hold any type
of pointer to data files, and cannot accept any node as children. The attributes of a
DESCRIPTION node are:

• Category. Holds a category tag, as in GENERIC nodes. For example, if a DESCRIPTION
node is created to hold information about the manufacturer of the device used to
acquire a set of data streams, a possibility would be to set “Manufacturer” as
Category.

• Text. User-defined text attribute (longer than the Name attribute present for the rest
of node types), meant for embedding any required description or additional
information. To follow the manufacturer example, the actual manufacturer would
be added as text here.

2.2.3 AUDIO nodes
AUDIO nodes (green color) hold audio streams. Each node will point to an audio file. Most
popular audio formats (e.g., Microsoft WAVE (PCM), MP3, OGG, or FLAC) are supported,
and a maximum of two channels per file are allowed. Only DESCRIPTION or ANNOTATION
nodes are allowed as children of AUDIO nodes. The attributes of an AUDIO node are:

• Category. Holds a category tag (idem as above). For example, if an AUDIO node points
to an audio file that contains a recording obtained through a cardiod microphone, one
may set “Cardiod” as Category.

• Name. User-defined text attribute, idem as in previously described node types.

• Filename. This attribute holds a pointer (text-based) to the audio file. When creating
the Struct, this attribute can be set to “Default” if no files are yet available, or
setmanually by browsing the file system when using the repoVizz Datapack Designer.

7

• OFFSETTIME. This attribute holds a numerical value (text-based, in decimal format)
indicating the offset start time of the audio stream with respect to the Datapack start,
the latter assumed to be always 0.0 (seconds). By default, the OFFSETTIME attribute
is set to 0.0 (seconds). (not yet implemented)

2.2.4 VIDEO nodes
VIDEO nodes (yellow color) hold video streams. Video files (pointed by VIDEO nodes) need
to be in one of the formats (compressed or not) supported by latest FFmpeg library3. Only
DESCRIPTION or ANNOTATION nodes are allowed as children of VIDEO nodes. The
attributes of a VIDEO node are:

• Category. Idem as in AUDIO node. For example, if a VIDEO node points to a video file
that contains a thermographic recording, one may set “Thermal” as Category.

• Name. User-defined text, idem as for previously described node types.

• Filename. Pointer to the video file,

• OFFSETTIME. Idem as for AUDIO nodes. (not yet implemented)

2.2.5 SIGNAL nodes
SIGNAL nodes (blue color) constitute the most elemental repoVizz data container when it
comes to signals that are not audio or video. Each SIGNAL node contains a
one-dimensional signal stream stored either as a CSV file or in Broadcast Wave Format4,
which is an extension of the popular Microsoft WAVE audio format with the addition of an
XML header chunk. Data streams in SIGNAL nodes can be at any sample rate. The repoVizz
CSV format is recommended for data files within a SIGNAL node because its simplicity, it
consists in a text file with comma-separated-values representing all the data samples of
the signal with the addition of a header in the first line specifying the sampling rate of the
signal (FRAMERATE) plus other optional attributes (OFFSETTIME, MINVAL, MAXVAL). See
figure 6 in section 3 for an example of a repoVizz CSV file.

When using BWF files, the data values need to be linearly normalized between 1 and
1 and the XML chunk is used for storing metadata associated with each file. In repoVizz,

some attributes are stored within the XML chunk: OFFSETTIME, FRAMERATE, MINVAL,
MAXVAL. These attributes coincide wih those included as part of SIGNAL nodes. The
advantage of using a binary format like BWF is that while memory requirements are
reduced with respect to CSV, time seeking is allowed and can be opened by many audio
editors (only for visualization) and also by numerical computing softwares like PyLab,

3 http://www.ffmpeg.org/
4 http://tech.ebu.ch/docs/tech/tech3285.pdf

8

Octave or Matlab. The repoVizz portal offers tools for converting back and forth between
BWF, CSV, and Matlab/Octave arrays. Internally, after uploading the data to repoVizz, it
transparently converts all data streams to BWF for efficiency reasons. So there is no need
by the user to upload data in BWF format to improve efficiency.

Only DESCRIPTION or ANNOTATION nodes are allowed as children of SIGNAL nodes. The
attributes of a SIGNAL node are:

• Category. Idem as above. For example, if a SIGNAL node points to a data file
containing an EEG time series, one may set “EEG” as Category.

• Name. Idem as for previously described node types.

• Filename. Pointer to the CSV or BWF file, idem as for previously described node
types.

• OFFSETTIME. Idem as for previously described node types. (not yet implemented)

• FRAMERATE. Frame rate (Hz); can be non-integer. This attribute is used in repoVizz

for data visualization and processing. This attribute can be left to “Default”, as it will
be automatically filled by the repoVizz Datapack Designer by reading the XML chunk
or the CSV header at the time of loading the BWF file, or (alternatively) in the server
when uploading a Datapack.

• MINVAL. Lower bound used when normalizing (linearly) the data; can be non-integer.

This attribute is used in repoVizz for data visualization and processing. This attribute
can be left to “Default”, as it will be automatically filled by the repoVizz Datapack
Designer by reading the XML chunk at the time of loading the BWF file or the CSV
header, or (alternatively) calculated in the server when uploading a Datapack.

• MAXVAL. Upper bound used when normalizing (linearly) the data; can be

non-integer. This attribute is used in repoVizz for data visualization and processing.
This attribute can be left to “Default”, as it will be automatically filled by the repoVizz
Datapack Designer by reading the XML chunk at the time of loading the BWF file or
the CSV header, or (alternatively) calculated in the server when uploading a Datapack.

It is common, for instance, to deal with signals that have more than one dimensions by
grouping several SIGNAL nodes together. For that case, it is recommended to group the
different dimensions through a GENERIC node. A good example of this is the case of
working with 3D Motion Capture data, which will be explained in Section 2.2.8.

2.2.6 ANNOTATION nodes
ANNOTATION nodes (pink color) hold annotation data in the form of time points and

9

labels forming lists stored in CSV files. ANNOTATION nodes only accept DESCRIPTION
nodes as children. The attributes of ANNOTATION nodes are:

• Category. Holds a category tag, with only two choices: “EventList” or “SegmentList”:

– “EventList" refers to event annotations (only one time point per label). The CSV
file pointed by the Filename attribute must present a pair <time,label> per line, with
<time> expressed in seconds and relative to the beginning of the dataset, or alternatively
to the time defined by the attribute OFFSET (described below):

 0.22,label_1

 1.38,label_2

 5.156,label_3

 ...

– “SegmentList" refers to segment annotations (two time points per label). The
CSV file pointed by the Filename attribute must present a trio <startTime, endTime,label>
per line, with <startTime> and <endTime> expressed in seconds and relative to the
beginning of the dataset, or alternatively to the time defined by the attribute OFFSET
(desribed below):

 0.22,1.38,label_1

 1.38,2.532,label_2

 2.532,5.156,label_3

 ...

There is an special case used for representing musical notes where ".notes" is used as the
file extension of the CSV file containing a trio <startTime, endTime,label> per line where
label will be a string representing a note name (e.g. A3, C#2, Bb5, etc) and these labels will
be taken into account to visualize accordingly in a nice way each note in the repoVizz
visualizer.

 • Name. Idem as for previously described node types.

 • Filename. Pointer to the CSV file, idem as for previously described node types.

 • OFFSETTIME. Idem as for previously described node types.

Once annotations are on the server, they can be edited (or even create new ones) via the
repoVizz Visualizer (see Section 6).

2.2.7 FILE nodes
FILE nodes (orange color) allow to embed any type of additional file into the Datapack.

10

Examples are .PDF, .DOC, or text files providing relevant documentation, images (e.g.,
pictures related to the data capture), MusicXML files for musical scores, etc. FILE nodes
accept DESCRIPTION and ANNOTATION as children. The attributes of a FILE node are:

 • Category

Idem as for previously described node types.

 • Name

Idem as for previously described node types.

 • Filename

Pointer to the actual file. Idem as for previously described node types.

There is one specific use for which may be required to use a FILE node. When working and
visualizing 3DOF Motion Capture data, it is often useful to visualize the physical
connections (bones or polygons) between the different markers. These connections can
be specified in a text CSV file included in the skeleton by means of a FILE node. This is
explained below.

2.2.8 Working with 3DOF motion capture data
In order to store and appropriately visualize 3DOF MoCap data in repoVizz, it is necessary
to structure data in a specific way. 3DOF MoCap data is organized in repoVizz by 3DOF
markers and 3DOF marker groups. Some examples of MoCap Data can be the high level
skeleton body markers that can be extracted using a low-cost Kinect device or the set of
3DOF markers captured using a Qualisys or Vicon Motion Capture professional devices.

3DOF markers
For each 3DOF marker, three SIGNAL nodes need to be used; each for one of the three
dimensions X, Y, Z. These three SIGNAL nodes need to be grouped together by means of a
GENERIC node with category MoCapMarker. Such a structure, depicted in Figure 3 , needs
to fulfill two requirements:

1. The Category and Name attributes of the three SIGNAL nodes need to be set,
respectively, to

 - Category: X | Name: <ID>

 - Category: Y | Name: <ID>

 - Category: Z | Name: <ID>,

 where <ID> is the identifier or tag used for the 3DOF marker.

2. The Category and Name attributes of the GENERIC node that groups the three
SIGNAL nodes need to be set to

 - Category: MoCapMarker | Name: <ID>,

11

 where <ID> is the identifier or tag of the 3DOF marker.

It is possible to make use of templates in order to speed up the process, or to even use
automatic tools (see the repoVizz portal for a utility that can be used to export motion
capture data from Qualisys 5 and convert it to a ready-to-use repoVizz Struct). Once the
above process has been repeated for all markers, we are ready to store and visualize
individual 3DOF markers (see Section 6 for a description of how 3DOF motion capture
data is handled in the repoVizz visualizer). However, it is recommended to appropriately
group markers so that the handling and visualization of large sets of markers (including
marker-marker connections) becomes more handy.

Figure 3: Schematic illustration of the substructure needed for each 3DOF motion
capture marker.

3DOF Marker Groups
To jointly store and visualize a set of 3DOF markers, it is required to group them by means
of a GENERIC node with category MoCapGroup. The attributes of such GENERIC node
(which groups any number of GENERIC MoCapMarker nodes) need to be set to

• Category: MoCapGroup | Name: <groupName>,

where <groupName> is the identifier or name given to the group of 3DOF markers. As it
happens with individual 3DOF markers, any GENERIC MoCapGroup node is easily
visualized (see Section 6).

3DOF Metadata
repoVizz offers the possibily to configure the appearance of 3DOF markers and to define
marker connections as “bones”. For doing so it is necessary to include, as a first-level child
of the GENERIC MoCapGroup node, a FILE node with category MoCapLinks that points
to a text file (CSV) with the extension “bones” in which details on colors, sizes, and
marker-to-marker connections are specified. The attributes of such FILE MoCapLinks node
need to be set to:

5 http://www.qualisys.com

12

• Category: MoCapLinks | Name: <groupName>,

where <groupName> is the identifier or name given to the group of 3DOF markers.
The MoCap metadata is specified in a CSV file (“.bones”) where each line must contain
one of the following directives (blank linkes are allowed):

Markers

Lines that start with M define the appearance of a marker, identified by its name. They
must have the following format:

 M,<ID>,<R>,<G>,,(<S>)

Where <ID> is the name of the marker, <R> <G> is its color in RGB format (0 to 255)
and <S>, which is optional, is its size, where 1 is the whole scene.

Bones

Bones are connections between pairs of markers, that appear as a line joining them. They
must be specified with the following format:

 B,<ID_1>,<ID_2>,(<R>,<G>,,(<A>))

Where <ID_1> and <ID_2> are the names of the markers, <R> <G> the color of the
bone and <A> its transparency (0 is fully opaque, 255 fully transparent). Transparency or
both transparency and color can be omitted.

13

3 Creating an XML structure with the repoVizz Datapack
Designer

In order to upload the data to repoVizz, we first need to design a tree-like structure in
which the data will be organized; this structure is called Datapack Struct, this is achieved
using the repoVizz Datapack Designer (which can be accessed at
http://repovizz.upf.edu/designer/). The Designer runs on Java, so make sure that you have
a recent version installed in your system.

3.1 The repoVizz Datapack Designer

The repoVizz Datapack Designer is used to create the XML file that represents a Datapack
Struct or to modify an existing one. It provides a graphical user interface to avoid direct
manipulation of the raw XML file by the user and helps in the process of creating the
Datapack Struct. With this tool the user can insert and delete nodes or sub-nodes, as well
as fill or edit their node attributes. Templates can be created containing a set of nodes and
sub-nodes for reusing them when a particular structure is repeated along the tree
structure or along different experiments with similar setups.

As soon as the Designer is launched, the user must specify the project folder; all of the
data that will be uploaded must be contained in this folder (important), either by placing
them there beforehand or by copying the data to the project folder through the Designer
(when the user selects a file which is not located in the project folder, the application asks
the user to copy the file to the project folder).

14

Figure 4: The repoVizz Datapack Designer

After choosing a folder, the main window of the Designer is opened (Figure 4). Starting
from the main <ROOT> node, the user can add sub-nodes of different types by right
clicking on a node and choosing Insert. A selection of different node types will appear
from a drop-down menu; for detailed information about each node type and its
properties, please see the previous section.

Besides adding nodes via the Insert menu option, the user can also copy and paste nodes
using either keyboard shortcuts (Ctrl+C and Ctrl+V) or by right-clicking on a node and
choosing Copy or Paste. Nodes can also be deleted with the Del key.

An important feature of the Designer is the use of Templates: sub-structures of nodes that
correspond to typical arrangements encountered in data collections. As an example, the
AudioGroup template consists of a Generic parent node with a couple of Audio nodes.
There is a number of built-in templates (found in the left panel of the Designer under the
label ’Default templates’), but the user can create and save their own templates. In order
to save a new user template, the user must right click on a node (which will serve as the
root/parent node for the template) and choose the Save as Template option. This will
generate a template (.sut) file in the project folder and add the new template in the left
panel under the ’User Templates’ label. For using this user template with future
datapacks, the user will need to copy this file to the working folder of each datapack.
Finally, the user can manage the existing templates and/or re-scan the project folder for
template files via the ’Templates’ option in the menu bar.

15

Figure 5: An example of a structure created for the toy dataset.

Figure 5 shows a finalized datapack structure generated for the toy dataset example
provided with this tutorial.

3.2 Data file formats
repoVizz is compatible with several different types of data; in this section we’ll go through
the main supported data formats (especially for the ones used in the toy dataset). You can
refer to the previous section “Data formatting and Structuring” for more details on data
formats.

3.2.1 Audio/Video
repoVizz supports all audio and video file formats that are compatible with FFmpeg. For a
complete list, see http://ffmpeg.org/general.html. The toy dataset contains 4 WAV audios
and an MP3 audio that can be found in the Audio Folder and 1 MP4 video file that can be
found in the Video Folder.

3.2.2 repoVizz CSV
For time series data, the most convenient format is the repoVizz CSV. It is essentially a text
file that consists of comma-separated values with an additional header in the first line,
specifying the sampling rate of the signal6. Figure 6 shows an example of a repoVizz CSV

6 Besides the sampling rate, the user can optionally specify the minimum and maximum value range for the signal, in order to ensure
that the signal will be visualized correctly.

16

file. The toy dataset contains 4 CSV signal files that need to be converted by the user to
repoVizz CSV files adding the header line, they can be found in the Descriptor Folder.

Figure 6: An example of a repoVizz CSV file.

In order to create a repoVizz CSV file from scratch, you can simply write your data as a .csv
file and manually add the header line; the only mandatory fields of the header line are the
repovizz flag in the beginning, and the framerate parameter. The minval and maxval
parameters are optional - they can also be specified as properties of the corresponding
SIGNAL node in the Designer. If the minimum and maximum values are not specified in
neither the .csv header or the node properties, they will be automatically computed on
the repoVizz server. It is useful to specify the minval and maxval if you know the range of
your data, because these values will be used in the visualizer to define the range of values
for each signal y-axis, if you have multiple signals that you might want to visualize
together in the same canvas to compare them (using the same scale), then it’s mandatory
to specify these parameters, otherwise each signal will be normalized with its current min
and max values. There are some things that need to be considered when setting these
parameters, maxval needs to be always a positive number and minval needs to be either 0
or -maxval.

3.2.3 3D Motion Capture data
There are some built-in templates in the repoVizz Datapack Designer for MoCap data, it’s
more than recommended to use these templates when dealing with 3DOF Motion
Capture data where you have a set of markers defined by their position in space with X, Y
and Z variables. The MoCap templates already define the required structure for a Motion
Capture object and its categories:

– The "MoCapMarker" template defines a 3DOF sensor, with its corresponding X, Y
and Z signals. Each signal (X,Y,Z) is a SIGNAL node (see section 2.2.5) containing the time
series values of each dimension of the position marker.

– The "MoCapGroup" template defines a group of 3DOF sensors, with its

17

corresponding sample markers and the metadata node (MoCapLinks). For more
information about the contents of the MoCapLinks FILE node see section 2.2.8 "Working
with 3DOF motion caopture data".

The toy dataset contains a TSV file and a TXT file containing MoCap markers and
associated metada, they can be found in the MoCap folder. This TSV is the output from a
recording of a String Quartet using the “Qualisys Track Manager" motion tracking
software, it has been converted to the repoVizz format and the result is included in the
ToyDatapack folder inside the toy example. In figure 7, we can see an excerpt of the
MoCapLinks file of the MoCapGroup included in the toy example:

M, C7.violin1, 0, 255, 0

M, RSHO.violin1, 0, 255, 0

M, RELB.violin1, 0, 255, 0

M, RWRA.violin1, 0, 255, 0

M, RWRB.violin1, 0, 255, 0

M, RFIN.violin1, 0, 255, 0

M, LSHO.violin1, 0, 255, 0

M, LELB.violin1, 0, 255, 0

M, LWRA.violin1, 0, 255, 0

M, LWRB.violin1, 0, 255, 0

M, LFIN.violin1, 0, 255, 0

M, TFHD.violin1, 0, 255, 0

M, RFHD.violin1, 0, 255, 0

M, LFHD.violin1, 0, 255, 0

...

B, C7.violin1, RSHO.violin1

B, C7.violin1, LSHO.violin1

B, RSHO.violin1, RELB.violin1

B, RELB.violin1, RWRA.violin1

B, RELB.violin1, RWRB.violin1

B, RWRA.violin1, RWRB.violin1

B, RWRA.violin1, RFIN.violin1

B, RWRB.violin1, RFIN.violin1

B, LSHO.violin1, LELB.violin1

B, LELB.violin1, LWRA.violin1

B, LELB.violin1, LWRB.violin1

B, LWRA.violin1, LWRB.violin1

B, LWRA.violin1, LFIN.violin1

B, LWRB.violin1, LFIN.violin1

B, TFHD.violin1, RFHD.violin1

B, TFHD.violin1, LFHD.violin1

B, RFHD.violin1, LFHD.violin1

18

...

Figure 7: Excerpt of a MoCapLinks Node with the name of markers and bones
(connections) of a MoCapGroup Node

3.2.4 Annotations
Annotation files are text documents, with each line of text representing a single
annotation/label with an onset time, (an offset time), and the label itself. There are two
different types of annotations:

– “EventList" refers to event annotations (only one time point per label). The file
pointed by the annotation node must present a pair <time,label> per line, with <time>
expressed in seconds and relative to the beginning of the dataset:

 0.22,label_1

 1.38,label_2

 5.156,label_3

 ...

– “SegmentList" refers to segment annotations (two time points per label). The file
pointed by the annotation node must present a trio <startTime, endTime,label> per line,
with <startTime> and <endTime> expressed in seconds and relative to the beginning of
the dataset:

 0.22,1.38,label_1

 1.38,2.532,label_2

 2.532,5.156,label_3

 ...

There is an special case used for representing musical notes (like in the example in the toy
dataset) where ".notes" is used as the extension of the file containing a trio <startTime,
endTime,label> per line where label will be a string representing a note name (e.g. A3,
C#2, Bb5, etc). The note name label will be taken into account to visualize accordingly in a
nice way each note in the repoVizz visualizer.

The toy dataset contains 4 files containing annotations (note segmentations), they can be
found in the Annotation folder.

3.2.5 Binary data (BWF)
In addition to the repoVizz CSV format, any time series data can be also written as binary
data files, following the Broadcast WAVE format (BWF) specification. A number of Python
and MATLAB scripts are available for writing to/reading from a BWF binary file; a detailed

19

list can be found in the repoVizz user manual7 (under construction). For this tutorial we
don’t recommend using this format.

7 http://repovizz.upf.edu/SIEMPRERepository/helpindex.jsp

20

4 Generating a datapack

Having created the XML data structure through the Designer, the last step to generating
the datapack is linking the nodes containing files inside the structure to the actual data
files to be uploaded. This can be achieved by right clicking on the node and choosing Edit
Node. Clicking on the ’Filename’ field of the node properties window (Fig. 8) will launch a
file browser window through which you can select the file you want to be associated with
that node.

Figure 8: Choosing the file path of an AUDIO node.

This procedure must be carried out for all nodes containing a link to a file (FILE, SIGNAL,
AUDIO, VIDEO, ANNOTATION). If a node is not yet associated with a file on the disk, or the
file can not found in the project folder, a red ’X’ symbol will be shown over the node icon
(Fig. 9). For big datapacks with a large number of files we can avoid this manual task by
setting the Filename attribute of each node to default and the Datapack Designer will
create a unique filename for each file based on the structure of the datapack, then the
user can use an external xml parser to get the filenames for each node and rename the
data files accordingly before generating the datapack.

Figure 9: AUDIO nodes correctly associated to a file vs. a node that is not yet associated to
a file.

Once all the files are linked, the datapack can be generated by clicking on the Generate
datapack button. It will create a zip file containing the XML Datapack Struct and all linked
files. This zip file is ready to be uploaded to the repoVizz repository.

21

5 Uploading a Datapack to repoVizz

Note: If you skipped the previous chapters and/or just want to use the toy datapack, do the following (please use Chrome web
browser):

1. Unzip the toy example to a folder on your computer.

2. Open the repoVizz Datapack Designer (from http://repovizz.upf.edu/designer/)
and choose the unzipped ToyDatapack folder as your project folder.

3. Go to File - Open Datapack Design... and choose the file ToyDatapack.xml which is
located inside the ToyDatapack folder.

4. Click the Generate Datapack button.

5. Go to http://repovizz.upf.edu/ and login as guest/guest.

6. Select the UPLOAD tab in the menu.

7. Select a folder where you want to upload your datapack into or specify a new
name and it will create a new folder, enter a description of your datapack, select
wether you want or not to compute audio descriptors on your uploaded audio files
and choose the file containing your datapack (.zip).

8. Click on the upload button.

The process will take some time depending on the size of the datapack and the type of
files that it contains (audios and videos are slow to process because they need to be
converted to a web friendly format). Once this process ends you are ready to browse and
visualize the files in the datapack. A message will tell you when the datapack is ready for
visualization.

22

6 Visualizing a datapack

To visualize a datapack using the html5 visualizer, do the following (please use Chrome
web browser):

1. Go to http://repovizz.upf.edu/ and login as guest/guest.

2. Select the BROWSE tab in the menu.

3. Open the folder where your datapack is located, click on the Datapack that you
want to visualize and press the button in the lower part of the screen Show
datapack.

4. A window with details of the Datapack (Name, Description, Author, Folder,
Duration, Date) will appear.

5. Then click on the button View to open the html5 visualizer.

6. Once the visualizer is opened and the datapack loaded you can drag the nodes in
the left Tree (Datapack Struct) to the canvases on the right and the signals are
loaded and displayed accordingly.

23

The visualizer has 3 main areas, as shown on Figure 10. On the top and the left there are
the Menu and Tools. On the right, there are the Canvas. On the left there is also the Struct
representing the Datapack files in the form of a Tree structure.

Figure 10: Schematic diagram of the Visualizer

Menu
On the leftmost part of the screen there is a flat, black pane; this is the Tools bar. The
global transport controls are placed here (see the Playback section), as well as a button to
hide the skeleton, the name of the datapack and a button to go back to the datapack
selection window. On the top of the screen there is the main Menu. It provides access to
many tools, such as saving Views, editing annotations, changing configuration properties
or exporting data.

Struct

Next to the left menu there is a large pane with the Datapack nodes on it; it is the Struct
of the Datapack. The contents of the Datapack can be browsed from here, and sent to the
Canvas for visualizing.

24

Canvas and Tabs
On the right, there are many panes on top of each other; these are the Canvas. The
Canvas provide a sort of timelines where data files are actually visualized. The waveform
or signal of choice will drawn on one of them, with full zoom and translation support. Each
Canvas can hold a number of Tabs, and each Tab corresponds to a file from the Datapack
being visualized. Annotations are drawn and edited also from the Canvas.

Floating windows
Some files, such as videos or Motion Capture data, are visualized on independent
windows, that float on top of the applications and can be dragged freely.

6.1 Browsing the data
A common workflow on the visualizer is to drag nodes from the Struct onto a Canvas to
open them, and then operate on the Canvas or the created window to explore the data
they contain. This exploration can consist of visual exploration, as well as actual
synchronous playback of audio and video files. When an area of interest is found, it can be
directly shared with anybody through a unique link, or downloaded locally for further
analysis.

Navigating the tree
The nodes with a plus sign (+) on the left contain children, which can be shown by clicking
on the sign or double-clicking anywhere on the node.

Exploring data
To visualize the data that nodes contain, drag them to one of the canvas. A new tab will be
created, and the data will be attached to it. Only nodes with data associated to them can
be dragged (audio, signal, video, annotations, file). Generic nodes that contain MoCap
data, which feature a triangle inside the icon, will be opened as MoCap visualizers; other
generic nodes will span all of their subnodes in different tabs with different colors.

Context Menu
If you right-click on a displayable node (in the tree), a context menu will pop out. There
you can select the canvas to send the data to; this can be used for opening, moving and
closing tabs. You can also select the color of the signal (or border in the case of floating
windows, and the width (thickness) of the signal.

6.2 Playback
All nodes with a little triangle on their icon (that is, audio, video and Motion Capture) can
be played back. Since the RepoVizz is made for managing amounts of synchronous data,
we have carefully designed the playback system so it’s easy to play many streams at the

25

same time and to select which ones to play. There are 3 play modes: local, grouped and
global. When a canvas is being played, its play button is substituted by a stop button that
starts blinking. Pressing any stop button will globally stop playback.

Local playback
With Local Playback, all playable tabs from the canvas being played are reproduced. To
play data in local mode, press the play button at the left bottom corner of the desired
canvas or press Shift + Space when the mouse pointer is on the desired canvas.

Group playback
Below the play button of each canvas there is a chain that allows defining groups of linked
canvas. Press Space or press the play button on the main menu to play all linked canvases
(that is, all canvases with the green chain). Click on the chain to link or unlink its canvas.

Global playback
To play every playback file that is displayed on the canvas, press Control + Space or click
the play button on the main menu while holding Shift.

6.3 Navigation
In order to increase performance, data is not fully loaded at once but in chunks. The size
of the chunks, in seconds, can be specified in the datapack selection window (below the
View button). During the visualization, only a chunk of the selected size (in seconds) is
available. To load the next or previous one, click on the dark grey arrows that appear at
the sides of the canvas. The single arrow jumps “half of the duration of the chunk”
seconds and the double arrows jumps to the next or previous starting/ending at the
end/beginning of the current chunk. Chunk selection is canvas-wise; each canvas can be
on a different chunk, but synchronized canvas always go together.

Canvas
Time series data can be zoomed both horizontally and vertically. Scroll the mouse wheel
to zoom horizontally, or press the [+]/[-] signs on the right of the scroll bar. Drag the scroll
bar to explore within the current chunk of data.

To zoom vertically, press Shift while scrolling the mouse or press the [+]/[-] buttons on the
top of the scroll bar. Vertical zoom is a bit special; we have carfully designed it to help
working with multiple signals at once. The [ALL] tab, which highlights no signal, can be
used to establish the global zoom and offset levels. The other tabs allow extra zoom, but
the offset is fixed.

There are many ways to close a tab. Apart from the tree, tabs can be closed by clicking on
the cross that appears on their right when hovering the mouse over them. Floating
windows have a cross as well on the top right corner.

26

6.4 3D Motion Capture Data
To visualize 3D data (such as the markers from motion capture systems), the user can drag
a Generic node containing 3D points inside it into a canvas. 3D points, which are generic
nodes with Signal nodes named X, Y and Z inside them, can also be dragged individually.
Additional data can be added dragging more nodes into the window that will open and
display the points. To skip the animation and load the data a bit faster, press the Ctrl key
during the dragging.

The window will be synchronized with the canvas it has been dragged into, as happens
with video windows. Navigation through the scene is very easy: pressing the Ctrl key while
dragging the mouse rotates the camera and pressing Shift moves it. Scrolling the mouse
wheel zooms in and out. To close the window, click on the button that appears on the top
right, close the tab that appears on the canvas or set the canvas of main node to none.

6.5 Editing annotations
Annotations can be manually created or edited by the user and the changes made can
then be commited to the repository. (To save annotations is still experimental so you can

27

expect bugs when saving changes to the server)

Editing existing annotations
To edit an existing annotation:

1. Open a datapack in the repoVizz Visualizer.

2. Drag the annotation node that you want to edit/change to a canvas on the right.

3. Make the new annotation node active by clicking on the tab on the top of the
canvas where you have dragged the node into. The tab will be highlighted.

4. Now, clicking with the right mouse button on the canvas, a context menu will show
up with some options on it. Depending where you click different options will be
displayed in the menu.

5. Generic context menu options will allow you to ’Save annotation to server’ and
’Export annotation’ as a text file.

6. If you click outside the boundaries of a segment or event the following additional
option will appear: ’Add event/segment’. This option allows to add new
event/segments to the current annotation node.

7. If you click inside a segment or on top of an event the following additional options
will appear: ’Edit event/segment’ and ’Delete event/segment’. These options allow
to change the name of the event/segment or delete them.

8. Mouse hovering the boundaries (dotted lines) of a segment/event annotation will
highlight them and if you left click on the boundary (or in the middle of a segment)
and move the mouse cursor, the boundaries will be changed and so the start end
time of the event/segment annotation.

9. Existing annotations can be saved into the datapack with a different name or
overwritting the current annotation.

28

Creating New Annotations
To create a new annotation:

1. Open a datapack in the repoVizz Visualizer.

2. Select a parent node (A generic node is recommended) in the left panel (Datapack
Struct) where you want to insert the new annotation node.

3. Select the option in the top main menu:
 File  Add node  Annotation  SegmentList / Event List

4. Choose a name for the new annotation node.

5. The new node will appear in the tree with a red message that says ’(not in server
yet)’, now you can drag the new node to a canvas on the right.

6. Make the new annotation node active by clicking on the tab on the top of the
canvas where you have dragged the node into. The tab will be highlighted.

7. Now, clicking with the right mouse button on the canvas, a context menu will show
with some options on it: ’Add event/segment’, ’Save annotation to server’ and
’Export annotation’ as a text file.

8. Follow the instructions on the previous section ’Editing existing annotations’ (from
point 6 onwards).

29

7 Sharing / Downloading a Datapack

There are two ways of exporting data from a datapack; creating a public link to the
datapack visualization, or downloading chunks of data to your computer.

7.1 Sharing a Datapack (public link)
Users can generate unique URL links that allow other people to directly access the
datapack. This is very handy to work collaboratively with remote colleagues, or to put a
reference in publications related to the data. The link will open the Visualizer displaying a
concrete datapack, enabling an interactive overview of it instead of just displaying static
plots or screenshots.

To do so, click on the ’Share’ option of the top main menu and select the “Create
shareable link...” menu option. A popup will apperar with the link, that can be copy-pasted
wherever needed.

The access is granted through a key embedded on the link that gives exclusive access to
that individual datapack. The link is only valid while the user that generated it has access
to the datapack; if the access is revoked, the link will be automatically disabled.

7.2 Downloading a Datapack
When downloading data from repoVizz, there are two options:

 • Downloading the entire datapack, or

 • Downloading only a specific segment of the datapack

In order to download the entire datapack, the user can either click on the ’Download’
button from the datapack list, or choose one of the two download options available from
the ’Share’ menu item on the top main menu of the Visualizer window (Fig. 11). The two
available options are either downloading all streams in the datapack or downloading only
the streams that are being visualized.

30

Figure 11: Downloading an entire datapack.

Downloading a specific segment from a Datapack is achieved in the following way:

1. Click on one of the canvases on the time point you want to be the start of your
downloaded segment and press the ’B’ key on your keyboard.

2. Click on one of the canvases on the time point you want to be the end of your
downloaded segment and press the ’E’ key on your keyboard; you’ll notice that this
highlights the chosen segment (fig. 12). Notice that the selection boundaries will be
quantized to the nearest second.

3. Right-click on the highlighted segment and choose Download segment in the
context menu that will appear.

Figure 12: Downloading a specific segment.

